

Material

Vinylester

Features & Benefits

- Suitable for use in cracked and non-cracked concrete M8 to M30 / rebar Ø8 to Ø32
- Qualified for use in seismic performance categories C1 and C2
- Low odour for safe use in confined spaces VOC Compliant (A+ rating)
- Excellent for use in cold weather conditions or applications where fast cure is required
- Superior sustained load performance at elevated temperatures
- Can be used in dry and damp conditions, wet or flooded environments (not sea water)
- Fire rated to R120
- Fits 300ml standard caulking gun or DT300 by Simpson Strong-Tie, easy to dispense

Applications

- Structural Steel
- · Steel Columns and Beams, Post Bases, Concrete Columns
- Balcony Extensions
- · Post-installed rebar applications
- Threaded Rod Anchoring
- · Facades, Safety Barriers
- Fences, Gates, Industrial Garage and Warehouse applications

Base Material

- Normal and Lightweight Concrete (cracked and non-cracked)
- Grout-filled and Hollow Concrete Block (when used with screen tubes)
- · Certain un-reinforced masonry applications

Approvals

VT-HP Curing Schedule for Concrete and Masonry - Maximum working time and minimum curing time

Concrete Temperature	Gelling/Working Time	Minimum Curing Time in Dry Concrete	Minimum Curing Time in Wet Concrete
0°C to +4°C*	45 min	7 h	x2
+5°C to +9°C	25 min	2 h	x2
+10°C to +19°C	15 min	80 min	x2
+20°C to +29°C	6 min	45 min	x2
+30°C to +34°C	4 min	25 min	x2
+35°C to +40°C	2 min	20 min	x2
+40°C	1,5 min	15 min	x2

^{*} Cartridge temperature must be between +5°C and +40°C

Simpson Strong-Tie® Australia Pty Ltd Call 1300 STRONGTIE (1300 787664) www.strongtie.com.au

^{*} In wet concrete the curing time must be doubled

Specifications

Installation Data - Threaded Rod

Decembring	Cumbal	Units			Threaded R	od Size (mm)		
Description	Symbol	Units	M8	M10	M12	M16	M20	M24
Nominal Insert Diameter	d		8	10	12	16	20	24
Drill Hole Diameter	d _o		10	12	14	18	24	28
Minimum Embedment Depth	h _{ef,min}		60	60	70	80	90	96
Maximum Embedment Depth	h _{ef,max}	mm	160	200	240	320	400	480
Clearance Hole Diameter in Fixture	d _f		9	12	14	18	22	26
Minimum Edge Distance	C _{min}		40	50	60	80	100	120
Minimum Spacing	S _{min}		40	50	60	80	100	120
Maximum torque moment	T _{inst, max}	Nm	10	20	40	80	120	160

Concrete Thickness, Critical Edge Distance and Spacing - Threaded Rod

Description	Symbol	Units	M8	M10	M12	M16	M20	M24
		Er	nbedment Dep	oth h _{ef} = 8d				
Embedment Depth	h _{ef}		64	80	96	128	160	192
Minimum Concrete Thickness	h _{min}		100	110	126	164	208	248
Critical Edge Distance	C _{cr,N}	mm	96	120	144	192	240	288
Critical Spacing	S _{cr,N}		192	240	288	384	480	576
		En	nbedment Dep	th h _{ef} = 12d				
Embedment Depth	h _{ef}		96	120	144	192	240	288
Minimum Concrete Thickness	h _{min}		126	150	174	228	288	344
Critical Edge Distance	C _{cr,N}	mm	144	180	216	288	360	432
Critical Spacing	S _{cr,N}		288	360	432	576	720	864

Design Resistance - Single Anchor, No Concrete Edge or Spacing Influence - Threaded Rod

Description	Symbol	Units	M8	M10	M12	M16	M20	M24
		Unc	racked Concre	ete - h _{ef} = 8d				
TENSION	N _{Rd}	kN	11.1	17.4	25.1	44.6	69	90.8
SHEAR	V _{Rd}	KIN	7.2	12	16.8	31.2	48.8	70.4
		Cr	acked Concret	e - h _{ef} = 8d				
TENSION	N _{Rd}	kN	4.5	7.3	11.5	20.4	31.9	46
SHEAR	V _{Rd}	KIN	7.2	12	16.8	31.2	48.8	70.4
		Unc	racked Concre	te - h _{ef} = 12d				
TENSION	N _{Rd}	kN	12	19.3	28	52	81.3	117.3
SHEAR	V _{Rd}	KIN	7.2	12	16.8	31.2	48.8	70.4
		Cra	acked Concrete	e - h _{ef} = 12d				
TENSION	N _{Rd}	kN	6.7	10.9	17.2	30.7	47.9	69
SHEAR	V_{Rd}	KIN	7.2	12	16.8	31.2	48.8	70.4

- 1. Concrete strength is 30 MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.
- 2. Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer Software for analysis.
- 3. $N_{\rm Rd}$ and $V_{\rm Rd}$ is based on use of a Grade 5.8 threaded insert. Verify capacity if using a different steel grade.
- 4. All design resistances are derived from the product's ETA (European Technical Assessment).

Design Resistance — Single Anchor, No Concrete Edge or Spacing Influence — Threaded Rod

Description	Symbol	Units	M8	M10	M12	M16	M20	M24						
	Category C1 - h _{ef} = 8d													
TENSION	N _{Rd}	kN	2.7	4.3	7.4	13.2	20.7	30.5						
SHEAR	V _{Rd}	KIN	2.3	4.2	5.9	10.9	17.1	24.6						
Category C2 - h _{ef} = 8d														
TENSION	N _{Rd}	kN	-	-	4	7.1	11.2	-						
SHEAR	V _{Rd}	KIN	-	-	4.1	7.3	11.4	-						
			Category C1 -	h _{ef} = 12d										
TENSION	N _{Rd}	kN	4	6.5	11.2	19.8	31	45.8						
SHEAR	V _{Rd}	KIN	2.5	4.2	5.9	10.9	17.1	24.6						
			Category C2 -	h _{ef} = 12d										
TENSION	N _{Rd}	kN	-	-	6	10.7	16.7	-						
SHEAR	V _{Rd}	KIN	-	-	5	10.9	17.1	-						

- 1. Concrete strength is 20 MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.
- 2. Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer™ Software for analysis.
- 3. N_{Rd} and V_{Rd} is based on use of a Grade 5.8 threaded insert. Verify capacity if using a different steel grade.
- 4. All design resistances are derived from the product's ETA (European Technical Assessment).

Steel Design Resistance (Tension) - Threaded Rod

Description	Symbol	Units	М8	M10	M12	M16	M20	M24
Steel Grade 5.8	NI NI	LANI	12.2	19.3	28	52.7	82	118
Stainless Steel A4	IN _{Rd,s}	kN	13.7	21.7	31.6	58.8	92	132

Steel Design Resistance (Shear) - Threaded Rod

Description	Symbol	Units	М8	M10	M12	M16	M20	M24
Steel Grade 5.8	.,	LANI	7.4	11.6	16.8	31.2	48.8	70.4
Stainless Steel A4	V _{Rd,s}	kN	8.2	13	19.2	35.3	55.1	79.5

Installation Data - Rebar

Description	Cumbal	Units	Rebar Size (mm)								
Description	Symbol		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Nominal Insert Diameter	d		8	10	12	14	16	20	25	28	32
Drill Hole Diameter	d _o		12	14	16	18	20	24	32	35	40
Minimum Embedment Depth	h _{ef,min}		60	60	70	75	80	90	100	112	128
Maximum Embedment Depth	h _{ef,max}	mm	160	200	240	280	320	400	500	580	640
Minimum Edge Distance	C _{min}		40	50	60	70	80	100	125	140	160
Minimum Spacing	S _{min}		40	50	60	70	80	100	125	140	160

Concrete Thickness, Critical Edge Distance and Spacing — Rebar

Description	Symbol	Units	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32		
		Er	nbedment	Depth h _{ef} =	8d								
Embedment Depth h _{ef} 64 80 96 112 128 160 200 224													
Minimum Concrete Thickness	h _{min}	100.100	100	110	128	148	168	208	264	294	336		
Critical Edge Distance	C _{cr,N}	mm	96	120	144	168	192	240	300	335	384		
Critical Spacing	S _{cr,N}		192	240	288	336	384	480	600	672	768		
		Em	bedment [Depth h _{ef} =	12d								
Embedment Depth	h _{ef}		96	120	144	168	192	240	300	336	384		
Minimum Concrete Thickness	h _{min}	100.100	126	150	176	204	232	288	364	406	464		
Critical Edge Distance	C _{cr,N}	mm	144	180	216	252	288	360	450	504	576		
Critical Spacing	S _{cr,N}		288	360	432	504	576	720	900	1008	1152		

Simpson Strong-Tie® Australia Pty Ltd Call 1300 STRONGTIE (1300 787664) www.strongtie.com.au

Design Resistance — Single Anchor, No Concrete Edge or Spacing Influence — Rebar

Description	Symbol	Units	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
		Unc	racked Cor	ncrete - h _{ef}	= 8d							
TENSION	N _{Rd}	kN	11.1	17.4	25.1	34.1	44.6	69	96.5	113.8	126.3	
SHEAR	V _{Rd}	KIN	9.3	14.7	20.7	28	36	56.7	88.7	110.7	144.7	
Cracked Concrete - h _{ef} = 8d												
TENSION	N _{Rd}	kN	4.5	7.3	11.5	15.6	20.4	31.9	49.9	74	96.6	
SHEAR	V _{Rd}	KIN	8.9	14.7	20.7	28	36	56.7	88.7	110.7	144.7	
		Unc	acked Con	crete - h _{ef}	= 12d							
TENSION	N _{Rd}	kN	16.7	26.1	37.6	51.2	66.9	104.5	149.7	170.7	189.5	
SHEAR	V_{Rd}	KIN	9.3	14.7	20.7	28	36	56.7	88.7	110.7	144.7	
		Cra	cked Conc	rete - h _{ef} =	12d							
TENSION	N _{Rd}	kN	6.7	10.9	17.2	23.5	30.7	47.9	74.8	110.9	144.9	
SHEAR	V _{Rd}	KIN	9.3	14.7	20.7	28	36	56.7	88.7	110.7	144.7	

- 1. Concrete strength is 30 MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.
- 2. Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer™ Software for analysis.
- 3. All design resistances are derived from the product's ETA (European Technical Assessment).

Design Resistance - Single Anchor, No Concrete Edge or Spacing Influence - Seismic Performance C1 - Rebar

Description	Symbol	Units	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32		
h _{et} = 8d													
TENSION	N _{Rd}	kN	2.7	4.3	7.4	10.1	13.2	20.7	33.1	49.2	64.3		
SHEAR	V _{Rd}	KIN	4.6	8.8	14.2	19.4	25.3	39.6	61.9	77.6	101.3		
			h _{ef} =	12d									
TENSION	N _{Rd}	kN	4	6.5	11.2	15.2	19.8	31	49.7	73.9	96.5		
SHEAR	V _{Rd}	KIN	6.3	10	14.2	19.4	25.3	39.6	61.9	77.6	101.3		

- 1. Concrete strength is 20 MPa (cylinder) unreinforced, hole condition is "dry", and temperature range 24°C long-term/43°C short-term.
- 2. Tabulated loads are valid at critical spacing and critical edge distance only. For spacing and edge distance influence, use Simpson's Anchor Designer Software for analysis.
- 3. All design resistances are derived from the product's ETA (European Technical Assessment).

Rebar Strength - Tension

· · · · · · · · · · · · · · · · · · ·											
Description	Symbol	Units	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Design Resistance	N _{Ed o}	kN	19.3	30.5	43.6	59.4	77.5	121.1	189.4	237.6	310.1

Rebar Strength - Shear

Description	Symbol	Units	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Design Resistance	$V_{Rd,s}$	kN	9	14.2	20.3	27.7	36.2	56.5	88.4	110.9	144.7

INSTALLATION

Cartridge Preperation: Open cartridge, pull bag firmly upwards and cut. Attach supplied Simpson Strong-Tie nozzle to cartridge (Do not modify or use alternative nozzles), and insert cartridge into Simpson Strong-Tie dispensing tool. Dispense and discard the first 5cm of mixed product until uniform colour appear.

Using a hammer drill, drill hole to specified diameter and depth.

Clean hole by brushing and blowing alternately:

- Manual Air Cleaning: 4x blow /4x brush / 4x blow for $d_0 \le 20$ mm & $h_{ef} \le 10d$
- Compressed Air Cleaning: 4x blow /4x brush /4x blow for all drill hole diameters and depths (min. 6 bar compressed air).

Inject resin using a Simpson Strong-Tie® dispensing tool. Fill hole two-thirds full, starting from bottom of hole, withdraw the nozzle after each trigger to prevent air pockets.

Insert clean, oil-free threaded rod/rebar, turning slowly until anchor/threaded rod reaches bottom of hole. The anchor can be loaded after the required curing time. Applied torque shall not exceed the values T_{max}.

Simpson Strong-Tie® Australia Pty Ltd Call 1300 STRONGTIE (1300 787664) www.strongtie.com.au

Simpson Strong-Tie® (New Zealand) Ltd Call 09 477 4440 www.strongtie.co.nz

This flyer reflects information available as of May 9, 2025 and may be updated periodically. Simpson Strong-Tie Limited Warranty: For the Limited Warranty that applies to Simpson Strong-Tie products, please consult www. strongtie.com.au/warranty or www.strongtie.com/s