SAE — Face Fix Joist Hanger

-140 mm

Corrosion Resistance Level

Corrosion Resistance Level

SEVERE

Low

Material: Carbon Steel 2mm thick; Stainless Steel 1.5mm thick

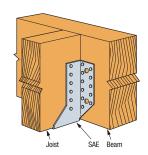
Finish:

Z275 Galvanised: SAE200/46/2: SAE250/46/2: SAE340/46/2: SAE500/46/2:

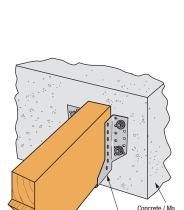
SAE500/90/2; SAE620/91/2;

316 Stainless Steel: SAEX440/90/1.5

Size: See illustration on the right and table below


Features & Benefits

- Manufactured in heavier gauge steel for a stronger load capacity
- Big seat for joists provides greater strength support
- Quick and simple installation
- May be fastened to the header material with either nails or bolts
- Can be installed on solid timber header, I-Beam or concrete/masonry wall
- Stainless steel versions available for applications that require a superior level of corrosion resistance
- Compatible with Strong-Drive® SD screws


Installation

- Use all specified fasteners
- Verify that the header can take the fasteners specified in the table
- SAE hangers can be installed by filling all round holes, or all bolt holes, with the specified fasteners. A combination of the two would not give any increase to the performance values
- The hangers have bolt holes for 10mm or 12mm fasteners into the face
- The timber bolted capacity to be determined according to the relevant standards. Do not exceed the load values given in the table
- The hanger depth is to be at least 60% of the carried member depth to prevent rotation, unless additional lateral restraint is added to the top of the carried member

Construction Details

SAE Installation

SAE

SAE Fix Joist on Concrete Installation

SAF

SAE Technical Data

Model No.	Joist Size (mm)		Dimensions ⁵ (mm)			Fasteners (No. – Length x Dia., mm)		Design Capacity (kN)		
	Width	Height	W	н	В	Face	Joist	Uplift k ₁ = 1.0	Dow Floor $k_1 = 0.80$	nload Roof k ₁ = 0.80
SAE200/46/2	45	90-120	45	77	84	8 – 38 x 3.75	4 – 38 x 3.75	3.00	5.70	5.70
SAE250/46/2		115-150	45	102	84	12 – 38 x 3.75	7 – 38 x 3.75	5.24	6.84	6.84
SAE340/46/2		160-220	45	147	84	22 – 38 x 3.75	12 – 38 x 3.75	8.99	13.06	13.06
SAE500/46/2		240-340	46	227	84	34 – 38 x 3.75	18 – 38 x 3.75	13.49	18.60	18.60
SAE500/90/2	90	225-340	91	205	84	34 – 38 x 3.75	18 – 38 x 3.75	13.49	18.6	18.6
SAE620/91/2		285-440	91	265	84	40 – 38 x 3.75	22 – 38 x 3.75	16.48	23.11	23.11
SAEX440/90/1.5		180-260	90.5	175	84	22 – 38 x 3.75	12 – 38 x 3.75	10.67	11.01	11.01

- Design Capacity is the lesser of (1) the Characteristic Capacity multiplied by the NZ Strength Reduction Factor φ), and applicable the k modification factors following NZS 3603 and (2) the Serviceability Capacity which is the load at 3.2mm joint slip. Design Capacity is the minimum of test data and structural joint calculation.
- The Strength Reduction Factor (ϕ) is 0.80 for nails in lateral loading.
- Duration of Load Factor (k₁) is as shown. Reduce Duration of Load Factor where applicable. Capacities may not be increased.
- Timber species for joint design is seasoned Radiata Pine, which is New Zealand Joint Group J5 per NZS 3603 Table 4.1.
- Dimensions W, H and B are for the interior of the hanger.

Simpson Strong-Tie® (New Zealand) Ltd Call **09 477 4440** www.strongtie.co.nz